The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves

Author:

Lin Jia-Lin1,Lee Myong-In2,Kim Daehyun3,Kang In-Sik3,Frierson Dargan M. W.4

Affiliation:

1. NOAA/Earth System Research Laboratory, and CIRES Climate Diagnostics Center, Boulder, Colorado

2. Global Modeling and Assimilation Office, NASA GSFC, Greenbelt, Maryland

3. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

4. Department of Geophysical Sciences, University of Chicago, Chicago, Illinois

Abstract

Abstract This study examines the impacts of convective parameterization and moisture convective trigger on convectively coupled equatorial waves simulated by the Seoul National University (SNU) atmospheric general circulation model (AGCM). Three different convection schemes are used, including the simplified Arakawa–Schubert (SAS) scheme, the Kuo (1974) scheme, and the moist convective adjustment (MCA) scheme, and a moisture convective trigger with variable strength is added to each scheme. The authors also conduct a “no convection” experiment with deep convection schemes turned off. Space–time spectral analysis is used to obtain the variance and phase speed of dominant convectively coupled equatorial waves, including the Madden–Julian oscillation (MJO), Kelvin, equatorial Rossby (ER), mixed Rossby–gravity (MRG), and eastward inertio-gravity (EIG) and westward inertio-gravity (WIG) waves. The results show that both convective parameterization and the moisture convective trigger have significant impacts on AGCM-simulated, convectively coupled equatorial waves. The MCA scheme generally produces larger variances of convectively coupled equatorial waves including the MJO, more coherent eastward propagation of the MJO, and a more prominent MJO spectral peak than the Kuo and SAS schemes. Increasing the strength of the moisture trigger significantly enhances the variances and slows down the phase speeds of all wave modes except the MJO, and usually improves the eastward propagation of the MJO for the Kuo and SAS schemes, but the effect for the MCA scheme is small. The no convection experiment always produces one of the best signals of convectively coupled equatorial waves and the MJO.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3