Evaluation of WRF Cloud Microphysics Schemes in Explicit Simulations of Tropical Cyclone ‘Fani’ Using Wind Profiler Radar and Multi-Satellite Data Products

Author:

Mohan P. Reshmi,Srinivas C. Venkata,Yesubabu V.,Rao T. Narayana,Venkatraman B.

Abstract

AbstractExtremely severe cyclonic storm (ESCS) ‘Fani’ formed in the North Indian Ocean and crossed at Puri in Orissa State on the east coast of India on 03 May 2019. In this study, we examine the sensitivity of convection permitting WRF simulations (3 km) of ‘Fani’ to cloud microphysics (CMP) schemes using radar and multi-satellite data products. Five CMP schemes, namely Thompson, Goddard, WSM6, Morrison and Lin are tested in WRF. Results show that the changes in the CMP schemes primarily affect the simulated intensity and have lesser impact on the track predictions. Simulations with Thompson followed by Goddard produced the best predictions for both track and intensity estimates. Our analysis reveals significant variations in vertical motions associated with Fani across different CMP schemes; the WSM6, Goddard and Lin schemes produced relatively stronger vertical motions. The explicit WRF simulations could reproduce the wind profiler radar observed intense convective motions during the transit of Fani between 1 and 2 May 2019 at Gadanki station. Experiments with Thompson and Goddard schemes simulated the mean vertical velocities in lower, middle and upper layers in better agreement with radar data. The Lin, WSM6 and Goddard CMP predicted stronger updraft velocities (~ 0.35 m/s); Thompson produced moderate updraft velocities (~ 0.25 m/s) in the upper troposphere over a relatively wider area of high theta-e (385–390 K) indicating the simulation of a convectively stronger and warmer core compared to Morrison. Our analysis suggests that the differences in vertical motions in various CMP simulations are mainly due to the variations in the warming in simulations. It has been found that WSM6, Lin and Goddard produced a deeper core (up to 200 hPa) with a stronger diabatic heating of ~ 6° C followed by Thompson, which simulated a moderately deep core extending to ~ 250 hPa with moderate heating of ~ 5 °C whereas Morrison produced a relatively weak core with a heating of ~ 4 °C limited to 300 hPa. The stronger simulated diabatic heating in Lin, WSM6 and Goddard produces stronger inflow, moisture convergence in the lower levels and stronger outflow and divergence in the upper levels leading to stronger convection in the core region in these cases. The Lin, WSM6 and Goddard mixed phase schemes with more solid hydrometeors simulated stronger radar reflectivities, and stronger eyewalls, due to more latent heat release leading to the development of a strong warm core in the upper troposphere and thus a stronger TC.

Funder

Indira Gandhi Centre for Atomic Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3