A Teleconnection between Forced Great Plains Snow Cover and European Winter Climate

Author:

Klingaman Nicholas P.1,Hanson Brian1,Leathers Daniel J.1

Affiliation:

1. Department of Geography, and Center for Climatic Research, University of Delaware, Newark, Delaware

Abstract

Abstract Anomalies in Siberian snow cover have been shown to affect Eurasian winter climate through the North Atlantic Oscillation (NAO). The existence of a teleconnection between North American snow cover and the NAO is far less certain, particularly for limited, regional snow cover anomalies. Using three ensembles of the Community Atmosphere Model, version 2 (CAM2), the authors examined teleconnections between persistent, forced snow cover in the northern Great Plains of the United States and western Eurasian winters. One ensemble allowed the model to freely determine global snow cover, while the other two forced a 72-cm snowpack centered over Nebraska. Of the forced ensembles, the “early-season” (“late season”) simulations initiated the snowpack on 1 November (1 January). The additional snow cover generated lower (higher) sea level pressures and geopotential heights over Iceland (the Azores) and warmer (cooler) temperatures over northern and western (eastern and southeastern) Europe, which suggests the positive NAO phase. Differences between the free-snow-cover and early-season ensembles were never significant until January, which implied either that the atmospheric response required a long lag or that the late-winter atmosphere was particularly sensitive to Great Plains snow. The authors rejected the former hypothesis and supported the latter by noting similarities between the early- and late-season ensembles in late winter for European 2-m temperatures, transatlantic circulation, and an NAO index. Therefore, a regional North American snow cover anomaly in an area of high inter- and intra-annual snow cover variability can show a stronger teleconnection to European winter climate than previously reported for broader snow cover anomalies. In particular, anomalous late-season snow in the Great Plains may shift the NAO toward the positive phase.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3