Sensitivity of seasonal circulation response to snow reduction in the Northern Hemisphere and Eurasia and its impact on Eurasian climate

Author:

Wang ShiyuORCID,Wyser Klaus,Koenigk Torben

Abstract

AbstractIn this study, we analyze the impact of reduced snow cover in the Northern Hemisphere on the atmosphere and if the atmospheric response depends on the model resolution. We use the atmospheric component of the global climate model EC-Earth and perform three experiments: in the first experiment, we reduce the snow cover in the entire Northern Hemisphere by reducing the snow albedo to a constant value of 0.3, in the second experiment, we reduce the snow albedo only over Eurasia, and the third experiment is the control run using normal snow conditions. All experiments are integrated over the period 1980–2015 at standard resolution (~ 80 km) and high resolution (~ 40 km). Experiments comprise 11 and 5 ensemble members at standard resolution and high resolution, respectively. Reducing the snow albedo in the Northern Hemisphere leads to 5–10% snow cover reduction in winter and spring. Significant warm responses are found over northern Eurasia in spring and summer with a warm response reaching 3 °C. Similar but weaker warm temperature responses are found in the middle and upper troposphere (up to 2 °C) and reversed temperature responses in the stratosphere (up to – 2 °C), particularly over eastern Eurasia. This is closely associated with westerly jet flow response which is enhanced at high-latitude and weakened at low-latitude in winter and spring over eastern Eurasia. Reduced snow cover leads to warmer surface temperatures that accelerate snow-melting and further lead to different snow-hydrological responses in western and eastern Eurasia and more precipitation occurs over eastern Eurasia (increasing 10–20%), particularly in the Siberian region. When the snow albedo is reduced only in the Eurasian sector, the surface response pattern resembles the results of the Northern Hemisphere experiment. The warm response is slightly weakened about 0.25–0.5 °C over Eurasia and significantly weakened outside of Eurasia. However, the upper air circulation response is much less pronounced over Eurasia. The impact of resolution on the mean surface field response is small yet it is more pronounced on the large-scale circulation response, particularly in spring and winter.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3