Hybrid Neural Network Models for Postprocessing Medium-Range Forecasts of Tropical Cyclone Tracks over the Western North Pacific

Author:

Cheung Hung Ming1,Ho Chang-Hoi1,Chang Minhee1

Affiliation:

1. a School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Abstract

Abstract Tropical cyclone (TC) track forecasts derived from dynamical models inherit their errors. In this study, a neural network (NN) algorithm was proposed for postprocessing TC tracks predicted by the Global Ensemble Forecast System (GEFS) for lead times of 2, 4, 5, and 6 days over the western North Pacific. The hybrid NN is a combination of three NN classes: 1) convolutional NN that extracts spatial features from GEFS fields; 2) multilayer perceptron, which processes TC positions predicted by GEFS; and 3) recurrent NN that handles information from previous time steps. A dataset of 204 TCs (6744 samples), which were formed from 1985 to 2019 (June–October) and survived for at least six days, was separated into various track patterns. TCs in each track pattern were distributed uniformly to validation and test dataset, in which each contained 10% TCs of the entire dataset, and the remaining 80% were allocated to the training dataset. Two NN architectures were developed, with and without a shortcut connection. Feature selection and hyperparameter tuning were performed to improve model performance. The results present that mean track error and dispersion could be reduced, particularly with the shortcut connection, which also corrected the systematic speed and direction bias of GEFS. Although a reduction in mean track error was not achieved by the NNs for every forecast lead time, improvement can be foreseen upon calibration for reducing overfitting, and the performance encourages further development in the present application.

Funder

Korea Meteorological Administration

Publisher

American Meteorological Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3