Modeling Spatial Distribution of Snow Water Equivalent by Combining Meteorological and Satellite Data with Lidar Maps

Author:

Mital Utkarsh1ORCID,Dwivedi Dipankar1,Özgen-Xian Ilhan12,Brown James B.34,Steefel Carl I.1

Affiliation:

1. a Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

2. b Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany

3. c Environmental Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, California

4. d Department of Statistics, University of California, Berkeley, Berkeley, California

Abstract

Abstract An accurate characterization of the water content of snowpack, or snow water equivalent (SWE), is necessary to quantify water availability and constrain hydrologic and land surface models. Recently, airborne observations (e.g., lidar) have emerged as a promising method to accurately quantify SWE at high resolutions (scales of ∼100 m and finer). However, the frequency of these observations is very low, typically once or twice per season in the Rocky Mountains of Colorado. Here, we present a machine learning framework that is based on random forests to model temporally sparse lidar-derived SWE, enabling estimation of SWE at unmapped time points. We approximated the physical processes governing snow accumulation and melt as well as snow characteristics by obtaining 15 different variables from gridded estimates of precipitation, temperature, surface reflectance, elevation, and canopy. Results showed that, in the Rocky Mountains of Colorado, our framework is capable of modeling SWE with a higher accuracy when compared with estimates generated by the Snow Data Assimilation System (SNODAS). The mean value of the coefficient of determination R2 using our approach was 0.57, and the root-mean-square error (RMSE) was 13 cm, which was a significant improvement over SNODAS (mean R2 = 0.13; RMSE = 20 cm). We explored the relative importance of the input variables and observed that, at the spatial resolution of 800 m, meteorological variables are more important drivers of predictive accuracy than surface variables that characterize the properties of snow on the ground. This research provides a framework to expand the applicability of lidar-derived SWE to unmapped time points. Significance Statement Snowpack is the main source of freshwater for close to 2 billion people globally and needs to be estimated accurately. Mountainous snowpack is highly variable and is challenging to quantify. Recently, lidar technology has been employed to observe snow in great detail, but it is costly and can only be used sparingly. To counter that, we use machine learning to estimate snowpack when lidar data are not available. We approximate the processes that govern snowpack by incorporating meteorological and satellite data. We found that variables associated with precipitation and temperature have more predictive power than variables that characterize snowpack properties. Our work helps to improve snowpack estimation, which is critical for sustainable management of water resources.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3