The Role of Cloud–Cloud Interactions in the Life Cycle of Shallow Cumulus Clouds

Author:

Chen Jingyi1ORCID,Hagos Samson1,Feng Zhe1,Fast Jerome D.1,Xiao Heng1

Affiliation:

1. a Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract Some of the climate research puzzles relate to a limited understanding of the critical factors governing the life cycle of cumulus clouds. These factors force the initiation and the various mixing processes during cloud life cycles. To shed some light into these processes, we tracked the life cycle of thousands of individual shallow cumulus clouds in a large-eddy simulation during the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems field campaign in the U.S. southern Great Plains. Concurrent evolution of clouds is tracked and their respective neighboring clouds are examined. Results show that the clouds initially smaller than neighboring clouds can grow larger than the neighboring clouds by a factor of 2 within 20% of their lifetime. Two groups of the tracked clouds with growing and decaying neighboring clouds, respectively, show distinct characteristics in their life cycles. Clouds with growing neighboring clouds form above regions with larger surface heterogeneity, whereas clouds with decaying neighboring clouds are associated with less heterogeneous surfaces. Also, those with decaying neighboring clouds experience larger instability and a more humid boundary layer, indicating evaporation below the cloud base is likely occurring before those clouds are formed. Larger instability leads to higher vertical velocity and convergence within the cloud, which causes stronger surrounding downdrafts and water vapor removal in the surrounding area. The latter appears to be the reason for the decaying neighboring clouds. Understanding those processes provide insights into how cloud–cloud interactions modulate the evolution of cloud population and into how this evolution can be represented in future cumulus parameterizations.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Interaction of a cumulus cloud ensemble with the large-scale environment, part I;Arakawa, A.,1974

2. Estimating bulk entrainment with unaggregated and aggregated convection;Becker, T.,2018

3. What determines the fate of rising parcels in a heterogeneous environment?;Brast, M.,2016

4. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results;Bretherton, C. S.,2004

5. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity;Chen, F.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3