PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
-
Published:2023-05-23
Issue:10
Volume:16
Page:2753-2776
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Feng ZheORCID, Hardin JosephORCID, Barnes Hannah C.ORCID, Li JianfengORCID, Leung L. RubyORCID, Varble AdamORCID, Zhang Zhixiao
Abstract
Abstract. This paper describes the new open-source framework PyFLEXTRKR
(Python FLEXible object TRacKeR), a flexible atmospheric feature tracking
software package with specific capabilities to track convective clouds from
a variety of observations and model simulations. This software can track any
atmospheric 2D objects and handle merging and splitting explicitly. The
package has a collection of multi-object identification algorithms, scalable
parallelization options, and has been optimized for large datasets including
global high-resolution data. We demonstrate applications of PyFLEXTRKR on
tracking individual deep convective cells and mesoscale convective systems
from observations and model simulations ranging from large-eddy resolving
(∼100s m) to mesoscale (∼10s km) resolutions.
Visualization, post-processing, and statistical analysis tools are included
in the package. New Lagrangian analyses of convective clouds produced by
PyFLEXTRKR applicable to a wide range of datasets and scales facilitate
advanced model evaluation and development efforts as well as scientific
discovery.
Funder
Office of Science National Science Foundation
Publisher
Copernicus GmbH
Reference67 articles.
1. Ashley, W. S., Mote, T. L., Dixon, P. G., Trotter, S. L., Powell, E. J.,
Durkee, J. D., and Grundstein, A. J.: Distribution of Mesoscale Convective
Complex Rainfall in the United States, Mon. Weather Rev., 131,
3003–3017, https://doi.org/10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2, 2003. 2. Barber, K. A., Burleyson, C. D., Feng, Z., and Hagos, S. M.: The influence
of shallow cloud populations on transitions to deep convection in the
Amazon, J. Atmos. Sci., 79, 723–743, https://doi.org/10.1175/jas-d-21-0141.1, 2021. 3. Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.-C.,
Lin, W., Bader, D. C., Keen, N. D., Feng, Y., Jacob, R., Maltrud, M. E.,
Roberts, A. F., Taylor, M. A., Veneziani, M., Wang, H., Wolfe, J. D.,
Balaguru, K., Cameron-Smith, P., Dong, L., Klein, S. A., Leung, L. R., Li,
H.-Y., Li, Q., Liu, X., Neale, R. B., Pinheiro, M., Qian, Y., Ullrich, P.
A., Xie, S., Yang, Y., Zhang, Y., Zhang, K., and Zhou, T.: The DOE E3SM
Coupled Model Version 1: Description and Results at High Resolution, J. Adv.
Model. Earth Sy., 11, 4095–4146, https://doi.org/10.1029/2019ms001870, 2019. 4. Catto, J. L., Jakob, C., and Nicholls, N.: Can the CMIP5 models represent
winter frontal precipitation?, Geophys. Res. Lett., 42, 8596–8604,
https://doi.org/10.1002/2015GL066015, 2015. 5. Chen, J., Hagos, S., Feng, Z., Fast, J. D., and Xiao, H.: The Role of
Cloud-Cloud Interactions in the Organization of Shallow Cumulus Clouds,
J. Atmos. Sci., 80, 671–686, https://doi.org/10.1175/jas-d-22-0004.1, 2022.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|