Environmental Modulation of Mechanical and Thermodynamic Forcing from Cold Pool Collisions

Author:

Falk Nicholas M.1ORCID,van den Heever Susan C.1ORCID

Affiliation:

1. a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Cold pools can initiate new convection by increasing vertical velocity (mechanical forcing) and locally enhancing moisture content (thermodynamic forcing). This study investigates the impact of the environment on mechanical and thermodynamic forcing from cold pool collisions. An ensemble of high-resolution numerical simulations was conducted that tested the sensitivity of cold pool collisions to three parameters: 1) the initial temperature deficit of cold pools, 2) the initial distance between cold pools, and 3) the static stability and moisture content of the environment. These parameters are tested in the absence of condensation, surface fluxes, radiation, and wind shear. Colder initial cold pools increase mechanical and thermodynamic forcing owing to greater horizontal winds during collisions. For all environments tested, mechanical forcing peaked robustly at an optimal initial distance between the cold pools due to a balance between the creation and dissipation of kinetic energy, and the different phases of density current evolution. Thermodynamic forcing peaked for greater initial cold pool distances than those associated with mechanical forcing. Decreased low-level static stability and an increased vertical gradient in low-level moisture enhanced mechanical and thermodynamic forcing, respectively. It is also shown that the initial temperature deficit had the greatest impact on mechanical and thermodynamic forcing, followed by the environment, and finally the initial separation distance. Finally, cold pool collisions are classified as “mechanically strong” or “mechanically weak,” where mechanically strong collisions increased mechanical forcing beyond that driven by the initial outward spreading of the cold pools. An analogous classification of “thermodynamically strong/weak” is also presented.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

1. Byers, H. R., and R. R. Braham, 1949: The Thunderstorm: Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

2. Moisture distributions in tropical cold pools from equatorial Indian Ocean observations and cloud‐resolving simulations;Chandra, A. S.,2018

3. Vertical structure of thunderstorm outflows;Craig Goff, R.,1976

4. Cold pool responses to changes in soil moisture;Drager, A. J.,2020

5. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations;Droegemeier, K. K.,1985a

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Morphology and growth of convective cold pools observed by a dense station network in Germany;Quarterly Journal of the Royal Meteorological Society;2023-12-19

2. The Observed Effects of Cold Pools on Convection Triggering and Organization During DYNAMO/AMIE;Journal of Geophysical Research: Atmospheres;2023-08-30

3. On the Sensitivity of Convective Cold Pools to Mesh Resolution;Journal of Advances in Modeling Earth Systems;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3