Use of a Vertical Vorticity Equation in Variational Dual-Doppler Wind Analysis

Author:

Shapiro Alan1,Potvin Corey K.2,Gao Jidong3

Affiliation:

1. School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract The utility of the anelastic vertical vorticity equation in a weak-constraint (least squares error) variational dual-Doppler wind analysis procedure is explored. The analysis winds are obtained by minimizing a cost function accounting for the discrepancies between observed and analyzed radial winds, errors in the mass conservation equation, errors in the anelastic vertical vorticity equation, and spatial smoothness constraints. By using Taylor’s frozen-turbulence hypothesis to shift analysis winds to observation points, discrepancies between radially projected analysis winds and radial wind observations can be calculated at the actual times and locations the data are acquired. The frozen-turbulence hypothesis is also used to evaluate the local derivative term in the vorticity equation. Tests of the analysis procedure are performed with analytical pseudo-observations of an array of translating and temporally decaying counterrotating updrafts and downdrafts generated from a Beltrami flow solution of the Navier–Stokes equations. The experiments explore the value added to the analysis by the vorticity equation constraint in the common scenario of substantial missing low-level data (radial wind observations at heights beneath 1.5 km are withheld from the analysis). Experiments focus on the sensitivity of the most sensitive analysis variable—the vertical velocity component—to values of the weighting coefficients, volume scan period, number of volume scans, and errors in the estimated frozen-turbulence pattern-translation components. Although the vorticity equation constraint is found to add value to many of these analyses, the analysis can become significantly degraded if estimates of the pattern-translation components are largely in error or if the frozen-turbulence hypothesis itself breaks down. However, tests also suggest that these negative impacts can be mitigated if data are available in a rapid-scan mode.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3