SWIRL: The First Australian Operational Radar-Based 3D Wind Analysis System

Author:

Protat Alain1ORCID,Louf Valentin1,Brook Jordan P.1

Affiliation:

1. a Bureau of Meteorology, Melbourne, Victoria, Australia

Abstract

Abstract In this paper, the first Australian operational radar-based three-dimensional (3D) wind analysis system named Synthetic Wind Information from Radar and Lidar (SWIRL) is described and evaluated. SWIRL employs a variational minimization formulation to combine results from four individual wind retrieval techniques of varied complexity to derive 3D winds in single-Doppler and multi-Doppler radar regions: a variational version of the traditional velocity azimuth display (VVAD) and double VAD (DVAD) techniques, a single-Doppler wind retrieval technique using optical flow horizontal wind proxies, and a multi-Doppler 3D wind retrieval technique. The SWIRL 3D wind components are evaluated against wind profiler observations and radar simulations using a very high-resolution (50 m) numerical simulation of a supercell thunderstorm. We find that SWIRL can retrieve very accurate horizontal winds, especially below 2-km height in the multi-Doppler regions, with mean absolute errors on wind speed and direction < 2 m s−1 and 10° on average and <2.5 m s−1 and 15°–20° 90% of the time. These errors do not increase noticeably with wind speed, highlighting the suitability of these retrieved winds to be used for damaging and destructive wind detection and nowcasting. The single-Doppler retrieval using optical flow is also found to provide reasonably accurate winds at these heights. The accurate retrieval of convective-scale updrafts and downdrafts, even using multi-Doppler information, is still a major challenge, with mean absolute errors of vertical velocity of about 50% on average. This can be attributed to the limitations of the current radar technology used operationally, imposing slow antenna speeds. Significance Statement Damaging and destructive winds have the potential to inflict significant damage to properties and assets and, tragically, result in loss of life. Efficient direction of emergency services to affected areas is essential for a prompt return to normal conditions. Wind farm operators require precise information on anticipated wind shifts to reduce the risk of energy grid failures. Strong winds also contribute to compound weather events, such as water ingress through hail-damaged roofs or structural damage to buildings caused by hailstones. The purpose of this work was to equip Australia with the first operational wind monitoring system, based on operational radar observations, to serve all these critical applications (and more).

Publisher

American Meteorological Society

Reference33 articles.

1. On the use of operationally synthesized multiple-Doppler wind fields;Bousquet, O.,2007

2. Operational multiple-Doppler wind retrieval inferred from long range radial velocity measurements;Bousquet, O.,2008

3. HailTrack–improving radar-based hailfall estimates by modelling hail trajectories;Brook, J. P.,2021

4. A variational interpolation method for gridding weather radar data;Brook, J. P.,2022

5. The effects of spatial interpolation on a novel, dual-Doppler 3D wind retrieval technique;Brook, J. P.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3