Affiliation:
1. Applied Marine Physics Department, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, Florida
Abstract
Abstract
The capability of phased-array HF radar systems to sample the spatial distribution of wave energy is investigated in different storm scenarios and coastal configurations. First, a formulation introduced by D. E. Barrick to extract significant wave height Hs from backscatter Doppler spectra was calibrated and subsequently tested (to assess bias and uncertainty) with data from seven different buoy/gauge stations collected during three different field experiments. Afterward, Hs observations were obtained for selected sampling locations within the radar effective domain (in all experiments), and a filtering technique based on wavelet transform characterization and decomposition was applied. The accuracy of the filtered radar-derived observations was assessed by comparing these estimates to results from independently calibrated wave propagation models. It was found that the HF radar accurately measured the energy field induced by different storm events. The filtering technique minimized the contribution of unrealistic features introduced by the presence of defective sampling, which is intrinsic to radar remote sensing at this frequency, and it proved to be central for the use of the HF radar as a tool to identify wave energy trends and potential zones of wave energy concentration in coastal areas. These findings show that the sampling capabilities of radar systems may be greatly enhanced because reliable wave energy estimates can be obtained in addition to conventional surface current measurements. This is particularly important in locations such as harbor entrances where in situ measuring devices cannot be deployed.
Publisher
American Meteorological Society
Subject
Atmospheric Science,Ocean Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献