Top-of-Atmosphere Radiance-to-Flux Conversion in the SW Domain for the ScaRaB-3 Instrument on Megha-Tropiques

Author:

Viollier Michel1,Standfuss Carsten2,Chomette Olivier1,Quesney Arnaud2

Affiliation:

1. Laboratoire de Météorologie Dynamique/IPSL/CNRS, Ecole Polytechnique, Palaiseau, France

2. Noveltis, Ramonville-St. Agne, France

Abstract

Abstract The earth radiation budget (ERB) is the difference between the solar absorbed flux and the terrestrial emitted flux. These fluxes are calculated from satellite measurements of outgoing shortwave (SW) and longwave (LW) radiances using empirical or theoretical models of the radiation anisotropy, which are called angular distribution models (ADMs). Owing to multidirectional measurement analyses and synergy with multispectral information at subpixel scale, the ADM developed for the NASA Clouds and the Earth’s Radiant Energy System (CERES) mission is presently the best knowledge and has to be taken into account for future ERB missions, such as the Indian–French Megha-Tropiques mission to be launched in 2010. This mission will carry an ERB instrument called the Scanner for Radiation Budget (ScaRaB). To prepare the algorithms for the ScaRaB ADM retrievals, the artificial neural network (ANN) method described by the CERES team has been adopted and improved by replacing the broadband (BB) radiances by narrowband (NB) radiances from the auxiliary channels of ScaRaB as input variables of the ANN. This article is restricted to the SW domain, the most critical case, and shows that the flux error is reduced by 60% compared to the former ERB Experiment–like model. The rms differences with the CERES fluxes are around 8.4 W m−2. ScaRaB/Megha-Tropiques measurements have a 4 times lower spatial resolution than those of the CERES/Tropical Rainfall Measuring Mission (TRMM). The impact of this spatial degradation has also been explored. There is a small systematic bias of about 1.5 W m−2 (or an absolute albedo error of 0.0015) and the rms differences are less than 3 W m−2; this is not significant compared to the overall error budget. For the radiance-to-flux conversion in the SW domain, the BB and NB ANN methods will be implemented in the ScaRaB/Megha-Tropiques data processing in order to provide SW flux estimates with an accuracy that is as consistent as possible with CERES results.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3