On the Use of Geophysical Parameters for the Top-of-Atmosphere Shortwave Clear-Sky Radiance-to-Flux Conversion in EarthCARE

Author:

Tornow F.1,Domenech C.2,Fischer J.1

Affiliation:

1. Institute for Space Sciences, Freie Universität Berlin, Berlin, Germany

2. GMV, Madrid, Spain

Abstract

AbstractWe have investigated whether differences across Clouds and the Earth’s Radiant Energy System (CERES) top-of-atmosphere (TOA) clear-sky angular distribution models, estimated separately over regional (1° × 1° longitude–latitude) and temporal (monthly) bins above land, can be explained by geophysical parameters from Max Planck Institute Aerosol Climatology, version 1 (MAC-v1), ECMWF twentieth-century reanalysis (ERA-20C), and a MODIS bidirectional reflectance distribution function (BRDF)/albedo/nadir BRDF-adjusted reflectance (NBAR) Climate Modeling Grid (CMG) gap-filled products (MCD43GF) climatology. Our research aimed to dissolve binning and to isolate inherent properties or indicators of such properties, which govern the TOA radiance-to-flux conversion in the absence of clouds. We collocated over seven million clear-sky footprints from CERES Single Scanner Footprint (SSF), edition 4, data with above geophysical auxiliary data. Looking at data per surface type and per scattering direction—as perceived by the broadband radiometer (BBR) on board Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)—we identified optimal subsets of geophysical parameters using two different methods: random forest regression followed by a permutation test and multiple linear regression combined with the genetic algorithm. Using optimal subsets, we then trained artificial neural networks (ANNs). Flux error standard deviations on unseen test data were on average 2.7–4.0 W m−2, well below the 10 W m−2 flux accuracy threshold defined for the mission, with the exception of footprints containing fresh snow. Dynamic surface types (i.e., fresh snow and sea ice) required simpler ANN input sets to guarantee mission-worthy flux estimates, especially over footprints consisting of several surface types.

Funder

European Space Agency

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3