Error Analysis and Sampling Strategy Design for Using Fixed or Mobile Platforms to Estimate Ocean Flux

Author:

Zhang Yanwu1,Bellingham James G.1,Chao Yi2

Affiliation:

1. Monterey Bay Aquarium Research Institute, Moss Landing, California

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

Abstract For estimating lateral flux in the ocean using fixed or mobile platforms, the authors present a method of analyzing the estimation error and designing the sampling strategy. When an array of moorings is used, spatial aliasing leads to an error in flux estimation. When an autonomous underwater vehicle (AUV) is run, measurements along its course are made at different times. Such nonsynopticity in the measurements leads to an error in flux estimation. It is assumed that the temporal–spatial autocovariance function of the flux variable can be estimated from historical data or ocean models (as in this paper). Using the temporal–spatial autocovariance function of the flux variable, the mean-square error of the flux estimate by fixed or mobile platforms is derived. The method is used to understand the relative strengths of moorings and AUVs (assumed here to be able to maintain constant speed) under different scenarios of temporal and spatial variabilities. The flux estimate by moorings through trapezoidal approximation generally carries a bias that drops quadratically with the number of moorings. The authors also show that a larger number of slower AUVs may achieve a more accurate flux estimate than a smaller number of faster AUVs under the same cumulative speed, but the performance margin shrinks with the increase of the cumulative speed. Using the error analysis results, one can choose the type of platforms and optimize the sampling strategy under resource constraints. To verify the theoretical analysis, the authors run simulated surveys in synthesized ocean fields. The flux estimation errors agree very well with the analytical predictions. Using an ocean model dataset, the authors estimate the lateral heat flux across a section in Monterey Bay, California, and also compare the flux estimation errors with the analytical predictions.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Sensor Networks and Control: Adaptive Sampling of Spatiotemporal Processes;Annual Review of Control, Robotics, and Autonomous Systems;2020-05-03

2. Autonomous Underwater Vehicles Lead to Scientific Discoveries in the Oceanic Wilderness;Journal of Engineering Studies;2016-04-01

3. A Marine Autonomous Surface Craft for Long-Duration, Spatially Explicit, Multidisciplinary Water Column Sampling in Coastal and Estuarine Systems;Journal of Atmospheric and Oceanic Technology;2015-03

4. Have robot, will travel;Methods in Oceanography;2014-09

5. Assimilating en-route Lagrangian observations;Tellus A: Dynamic Meteorology and Oceanography;2013-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3