Critical Assessment of Microphysical Assumptions within TRMM Radiometer Rain Profile Algorithm Using Satellite, Aircraft, and Surface Datasets from KWAJEX

Author:

Fiorino Steven T.1,Smith Eric A.2

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager precipitation profile retrieval algorithm (2a12) assumes cloud model–derived vertically distributed microphysics as part of the radiative transfer–controlled inversion process to generate rain-rate estimates. Although this algorithm has been extensively evaluated, none of the evaluation approaches has explicitly examined the underlying microphysical assumptions through a direct intercomparison of the assumed cloud-model microphysics with in situ, three-dimensional microphysical observations. The main scientific objective of this study is to identify and overcome the foremost model-generated microphysical weaknesses in the TRMM 2a12 algorithm through analysis of (a) in situ aircraft microphysical observations; (b) aircraft- and satellite-based passive microwave measurements; (c) ground-, aircraft-, and satellite-based radar measurements; (d) synthesized satellite brightness temperatures and radar reflectivities; (e) radiometer-only profile algorithm retrievals; and (f) radar-only profile or volume algorithm retrievals. Results indicate the assumed 2a12 microphysics differs most from aircraft-observed microphysics where either ground or aircraft radar–derived rain rates exhibit the greatest differences with 2a12-retrieved rain rates. An emission–scattering coordinate system highlights the 2a12 algorithm's tendency to match high-emission/high-scattering observed profiles to high-emission/low-scattering database profiles. This is due to a lack of mixed-phase-layer ice hydrometeor scatterers in the cloud model–generated profiles as compared with observed profiles. Direct comparisons between aircraft-measured and model-generated 2a12 microphysics suggest that, on average, the radiometer algorithm's microphysics database retrieves liquid and ice water contents that are approximately 1/3 the size of those observed at levels below 10 km. Also, the 2a12 rain-rate retrievals are shown to be strongly influenced by the 2a12's convective fraction specification. A proposed modification of this factor would improve 2a12 rain-rate retrievals; however, fundamental changes to the cloud radiation model's ice parameterization are necessary to overcome the algorithm's tendency to produce mixed-phase-layer ice hydrometeor deficits.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference35 articles.

1. Global tropical rain estimates from microwave adjusted geosynchronous IR data.;Adler;Remote Sens. Rev,1994

2. The development of SSM/I rain-rate retrieval algorithms using ground based radar measurements.;Ferraro;J. Atmos. Oceanic Technol,1995

3. Fiorino, S. T. , 2002: Investigation of microphysical assumptions in TRMM radiometer's rain profile algorithm using KWAJEX satellite, aircraft, and surface data sets. Ph.D. dissertation, The Florida State University, 104 pp.

4. Flatau, P. J., G. J.Tripoli, J.Verlinde, and W. R.Cotton, 1989: The CSU-RAMS cloud microphysical module: General theory and code documentation. Dept. of Atmospheric Science, Colorado State University Paper 451, 88 pp.

5. Impact of cloud microphysics on convective–radiative quasi equilibrium revealed by cloud-resolving convective parameterization.;Grabowski;J. Climate,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3