Numerical Simulation of the Diurnal Cycle of a Precipitation System during KWAJEX by 2D and 3D Cloud-Resolving Models

Author:

Xu HuiyanORCID,Song Yu,Hu TangaoORCID,Wang Jiapeng,Zhang Dengrong

Abstract

Two-dimensional (2D) and three-dimensional (3D) cloud-resolving model (CRM) results from the Tropical Rainfall Measuring Mission Kwajalein Experiment (KWAJEX) were applied to analyze the diurnal cycle of cloud development in the tropics. Cloud development is intimately associated with the growth of secondary circulation, which can be analyzed in the budget of perturbation kinetic energy (PKE). The ice and liquid water path (IWP+LWP) is a fundamental parameter for estimating clouds, with the analyzed results suggesting that (1) the ice and liquid water path (IWP+LWP) and PKE values attained in convective regions were higher during the nighttime than during the daytime and that the maxima of IWP+LWP and PKE occurred at midnight in the lower troposphere in the 3D model run, and that (2) the IWP+LWP and PKE values in stratiform regions were much higher in the afternoon than in the morning, while the maxima of IWP+LWP and PKE occurred in the afternoon in the middle troposphere in the 2D model run. Further analysis demonstrated that both the high IWP+LWP and PKE values in the lower troposphere at midnight were mainly associated with the warm–humid lower troposphere in convective regions. However, those in the middle troposphere in the afternoon were primarily linked to the dry–cold upper troposphere and moist–warm lower troposphere in stratiform regions. The results further revealed that (1) both IWP+LWP and PKE exhibited shorter time scales in the 2D model runs than in the 3D model runs and that (2) the maximum IWP+LWP values occurred in the afternoon in the 2D model runs and at midnight in the 3D model runs.

Funder

Natural Science Foundation of Zhejiang Province of China

National Natural Science Foundation of China

Scientific Research Foundation of Hangzhou Normal University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3