Affiliation:
1. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming
Abstract
Abstract
Several airborne field experiments have been conducted to verify model descriptions of cloud droplet activation. Measurements of cloud condensation nuclei and updraft are inputs to a parcel model that predicts droplet concentration and droplet size distributions (spectra). Experiments conducted within cumulus clouds have yielded the most robust agreement between model and observation. Investigations of stratocumulus clouds are more varied, in part because of the difficulty of gauging the effects of entrainment and drizzle on droplet concentration and spectra. Airborne lidar is used here to supplement the approach used in prior studies of droplet activation in stratocumulus clouds.
A model verification study was conducted using data acquired during the Southern Hemispheric VAMOS Ocean–Cloud–Aerosol–Land Study Regional Experiment. Consistency between observed and modeled droplet concentrations is achieved, but only after accounting for the effects of entrainment and drizzle on concentrations produced by droplet activation. In addition, predicted spectral dispersions are 74% of the measured dispersions following correction for instrument broadening. This result is consistent with the conjecture that differential activation (at cloud base) and internal mixing (i.e., mixing without entrainment) are important drivers of true spectral broadening.
Funder
Division of Atmospheric and Geospace Sciences
Publisher
American Meteorological Society
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献