Electrification and Lightning in Idealized Simulations of a Hurricane-Like Vortex Subject to Wind Shear and Sea Surface Temperature Cooling

Author:

Fierro Alexandre O.1,Mansell Edward R.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Relationships between intensity fluctuations, cloud microphysics, lightning variations, and electrical structures within idealized tropical cyclones are investigated with the cloud-resolving Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). An initial strong tropical cyclone is subjected to either steady-state control conditions (CTRL), increased wind shear (SHEAR), or a reduction in sea surface temperature (SST). In CTRL, nearly all the lightning (>95%) occurred in the outer region (100 < r ≤ 300 km) and was overall very episodic in the inner core (r ≤ 100 km), consistent with observations. The inner-core updrafts were weaker and experienced greater depletion of cloud water by warm rain processes, which, in contrast to the deeper updrafts in the rainband convection, reduced the mixed-phase cloud depth and confined the bulk of the charging and lightning initiations to lower levels. Notably, larger flash rates were produced in the asymmetric inner core of the SHEAR case, with the majority of the flashes located in the downshear left quadrant, consistent with prior observational works. In contrast to CTRL, the more vigorous inner-core convection in SHEAR resulted in the formation of a prominent negative charge region and enhanced production of negative ground flashes. With a nearly identical filling rate as SHEAR, the introduction of cooler sea surface temperature in the SST case caused lightning activity to fade rapidly in both the inner core and rainbands.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3