Modeling the Electrical Energy Discharged by Lightning Flashes Using Capacitors for Application with Lightning Datasets

Author:

Abstract

AbstractThis study employed a parallel-plate capacitor model by which the electrostatic energy of lightning flashes could be estimated by considering only their physical dimensions and breakdown electric fields in two simulated storms. The capacitor model has previously been used to approximate total storm electrostatic energy but is modified here to use the geometry of individual lightning flashes to mimic the local charge configuration where flashes were initiated. The energy discharged may then be diagnosed without context of a storm’s entire charge structure. The capacitor model was evaluated using simulated flashes from two storms modeled by the National Severe Storms Laboratory’s Collaborative Model for Multiscale Atmospheric Simulation (COMMAS). Initial capacitor model estimates followed the temporal evolution of the flash discharge energy of COMMAS for each storm but demonstrated the need to account for an adjustment factor μc to represent the fraction of energy a flash dissipates, as this model assumes the entire preflash energy is discharged by a flash. Individual values of μc were obtained simply by using the ratio of the COMMAS flash to capacitor energy. Median values were selected to represent the flash populations for each storm, and were in range of . Application of aligned the magnitudes of the capacitor model discharge energy estimates to those of COMMAS and to those estimated in previous studies. Therefore, by considering a μc within range of , application of the capacitor model for observed lightning datasets is suggested.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3