Nocturnal Tornado Climatology*

Author:

Kis Amanda K.1,Straka Jerry M.1

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Very few studies on nocturnal tornadoes have been performed, and operational forecasting of nocturnal tornadoes is often guided by the results of studies that are biased toward daytime tornadoes. However, it is likely that tornado environments vary significantly over the diurnal cycle. For example, the depth and nature of storm inflow may change as the daytime boundary layer transitions into a stable nighttime boundary layer, and a low-level jet (LLJ) may form above in the residual layer and free atmosphere. The study performed herein is used to investigate features unique to nocturnal boundary layers and the free atmosphere above that may affect nocturnal tornadoes. A climatology of significant (F2–F5) nocturnal tornadoes in the contiguous United States between 2004 and 2006 shows that environments deemed by previous climatologies as unfavorable for late afternoon/early evening tornadogenesis are in fact conducive to significant nocturnal tornadogenesis. These nocturnal environments may be characterized by marginal convective instability with shallow stable boundary layers. Substantial low-level shear, storm relative helicity (SREH), and exceptionally strong nocturnal low-level jets stand out as the most common features of significant nocturnal tornadoes and have utility in distinguishing environments of weak nocturnal tornadoes from environments of significant nocturnal tornadoes. Analysis of the data gathered in the climatology shows that the suggestions of existing tornado climatologies are inadequate and even misguiding for forecasting nocturnal tornadoes. Several recommendations for operational forecasting of nocturnal tornadoes are made based on the results of this climatology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference45 articles.

1. Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005.;Ashley;Wea. Forecasting,2007

2. Vulnerability due to nocturnal tornadoes.;Ashley;Wea. Forecasting,2008

3. A mechanism for assisting in the release of convective instability.;Beebe;Mon. Wea. Rev.,1955

4. RUC-2—The Rapid Update Cycle version 2.;Benjamin,2009

5. Climatology of the low level jet.;Bonner;Mon. Wea. Rev.,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3