Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting

Author:

Cucurull L.1

Affiliation:

1. NOAA/NESDIS/STAR, and Joint Center for Satellite Data Assimilation, Washington, D.C

Abstract

Abstract As of May 2007, the National Centers for Environmental Prediction (NCEP) implemented a new Global Data Assimilation System. This system incorporated the assimilation of global positioning system (GPS) radio occultation (RO) profiles from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission, which was launched in April 2006. Since then, this new type of observation has been shown to provide additional information on the thermodynamic state of the atmosphere, resulting in a significant increase in the model skill. Recent updates of the analysis and modeling codes have required a revision of the algorithm that assimilates GPS RO data. In addition, some modifications in the processing of the observations have further enhanced the need for a revisiting of the assimilation code. Better characterizations of the quality control procedures, observation error structure, and forward modeling for the GPS RO observations are described. The updated system significantly improves the data usage, in particular in the tropics. Different sets of the atmospheric refractive indices are also evaluated in this study. The model performance is proven to be quite sensitive to the chosen coefficients and a reevaluation of these constants is recommended within the GPS community. The new assimilation configuration results in an improvement in the anomaly correlation scores for the Southern Hemisphere extratropics (∼4.5 h for the 500-mb geopotential heights at day 7) and a reduction of the high- and low-level tropical wind errors. Overall, the benefits of using COSMIC on top of all the other observations used in the operational system are still very significant. The loss in model skill when COSMIC is removed from the observing system is remarkable at day 4 (∼8 h) and steadily increases beyond 12 h with the extended forecast range.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference18 articles.

1. The COSMIC/FORMOSAT-3 mission.;Anthes;Bull. Amer. Meteor. Soc.,2008

2. GPS meteorology: Mapping zenith wet delays onto precipitable ware.;Bevis;J. Appl. Meteor.,1994

3. On the index of refraction of air, the absorption and dispersion of centimeter waves by gases.;Boudouris;J. Res. Natl. Bur. Stand.,1963

4. Satellite constellation monitors global and space weather.;Cheng;Eos, Trans. Amer. Geophys. Union,2006

5. Operational implementation of COSMIC observations into the NCEP’s Global Data Assimilation System.;Cucurull;Wea. Forecasting,2008

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3