Cirrus Microphysical Properties and Air Motion Statistics Using Cloud Radar Doppler Moments. Part I: Algorithm Description

Author:

Deng Min1,Mace Gerald G.1

Affiliation:

1. University of Utah, Salt Lake City, Utah

Abstract

Abstract The first three moments of the millimeter-wavelength radar Doppler spectrum provide valuable information regarding both cloud properties and air motion. An algorithm using these Doppler radar moments is developed to retrieve cirrus microphysical properties and the mean air vertical motion and their errors. The observed Doppler spectrum results from the convolution of a quiet-air radar reflectivity spectrum with the turbulence probability density function. Instead of expressing the convolution integral in terms of the particle fall velocity as in past studies, herein the convolution integral is integrated over the air motion so that the mean vertical velocity within the sample volume can be explicitly solved. To avoid an ill-conditioned problem, the turbulence is considered as a parameter in the algorithm and predetermined from the Doppler spectrum width and radar reflectivity based on the observation that the spread of the particle size distribution in the velocity domain dominates the Doppler spectrum width measurement for most cirrus. It is also shown that the assumed single mode functional shapes cannot reliably represent significant bimodalities. Nevertheless, the IWC can be retrieved more reliably than can the mass mean particle size. Error analysis also shows that the retrieval algorithm results are very sensitive to the power-law relationships describing the ice particle mass and the terminal velocity in terms of the particle maximum length. It is estimated that the algorithm errors will be on the order of 35%, 85%, and ±20 cm s−1 for mass mean particle size, IWC, and sample volume mean air motion, respectively. Algorithm validation with in situ data demonstrates that the algorithm can determine the cloud microphysical properties and air mean vertical velocity within the predicted theoretical error bounds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference41 articles.

1. Heating rates in tropical anvils.;Ackerman;J. Atmos. Sci.,1988

2. Millimeter wave scattering from spatial and planar bullet rosettes.;Aydin;IEEE Trans. Geosci. Remote Sens.,1999

3. Radar and radiation properties of ice clouds.;Atlas;J. Appl. Meteor.,1995

4. The retrieval of turbulent broadening in radar Doppler using linear inversion with double-sided constraint.;Babb;J. Atmos. Oceanic Technol.,2000

5. Data Reduction and Error Analysis for the Physical Sciences.;Bevington,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3