A Comparative Investigation of Light Scattering and Digital Holographic Imaging to Measure Liquid Phase Cloud Droplets

Author:

Zhang Chuan1,Wang Jun1,Yang Chenyu1,Zhou Hao1,Liu Jingjing1,Hua Dengxin1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

The measurement of cloud microphysical parameters plays an important role in describing characteristics of liquid phase clouds and investigating mutual relationships between clouds and precipitation. In this paper, cloud microphysical parameters at Liupan Mountain Weather Station in Ningxia are measured with a high-resolution coaxial digital holographic imager and a fog monitor 120. There are differences in the measurement results between the two instruments. The number concentration measured by the digital holographic imager is about 1.5 times that of the fog monitor 120. However, their Pearson correlation coefficient is above 0.9. Through analysis, we found that the measurement results of the digital holographic imager and fog monitor 120 are differences in 2–4 µm and 7–50µm. For the droplets with the diameters of 4–7 µm, their measurement results have good consistency. By analyzing the influence of wind field and detection sensitivity on the measurement principle, the reasons which caused the difference are proposed. Advice is given to observe topographic clouds by using the above two instruments. In addition, the differences in liquid water content and visibility are analyzed due to the absence of small and large droplets. The study provides data support for improving the accuracy of instruments in measuring cloud droplets and is useful for research in the field of cloud microphysical processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3