Hurricane Ida (2021): Rapid Intensification Followed by Slow Inland Decay

Author:

Zhu Yi-Jie11,Collins Jennifer M.1,Klotzbach Philip J.22,Schreck Carl J.33

Affiliation:

1. School of Geosciences, University of South Florida, Tampa, Florida;

2. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado;

3. Cooperative Institute for Satellite Earth System Studies, North Carolina State University, Asheville, North Carolina

Abstract

Abstract Hurricane Ida recently became one of the strongest hurricanes to hit Louisiana on record, with an estimated landfalling maximum sustained wind of 130 kt (1 kt ≈ 0.51 m s−1). Although Hurricane Ida made landfall at a similar time of year and landfall location as Hurricane Katrina (2005), Ida’s postlandfall decay rate was much weaker than Hurricane Katrina. This manuscript includes a comparative analysis of pre- and postlandfall synoptic conditions for Hurricane Ida and other historical major landfalling hurricanes (category 3+ on the Saffir–Simpson hurricane wind scale) along the Gulf Coast since 1983, with a particular focus on Hurricane Katrina. Abundant precipitation in southeastern Louisiana prior to Ida’s landfall increased soil moisture. This increased soil moisture along with extremely weak overland steering flow likely slowed the storm’s weakening rate postlandfall. Offshore environmental factors also played an important role, particularly anomalously high nearshore sea surface temperatures and weak vertical wind shear that fueled the rapid intensification of Ida just before landfall. Strong nearshore vertical wind shear weakened Hurricane Katrina before landfall, and moderate northward steering flow caused Katrina to move inland relatively quickly, aiding in its relatively fast weakening rate following landfall. The results of this study improve our understanding of critical factors influencing the evolution of the nearshore intensity of major landfalling hurricanes in the Gulf of Mexico. This study can help facilitate forecasting and preparation for inland hazards resulting from landfalling hurricanes with nearshore intensification and weak postlandfall decay.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3