Users’ Cognitive Load: A Key Aspect to Successfully Communicate Visual Climate Information

Author:

Pérez-Montoro Mario1

Affiliation:

1. Faculty of Information and Audiovisual Media, Universitat de Barcelona, Barcelona, Spain

Abstract

Abstract The visual communication of climate information is one of the cornerstones of climate services. It often requires the translation of multidimensional data to visual channels by combining colors, distances, angles, and glyph sizes. However, visualizations including too many layers of complexity can hinder decision-making processes by limiting the cognitive capacity of users, therefore affecting their attention, recognition, and working memory. Methodologies grounded on the fields of user-centered design, user interaction, and cognitive psychology, which are based on the needs of the users, have a lot to contribute to the climate data visualization field. Here, we apply these methodologies to the redesign of an existing climate service tool tailored to the wind energy sector. We quantify the effect of the redesign on the users’ experience performing typical daily tasks, using both quantitative and qualitative indicators that include response time, success ratios, eye-tracking measures, user perceived effort, and comments, among others. Changes in the visual encoding of uncertainty and the use of interactive elements in the redesigned tool reduced the users’ response time by half, significantly improved success ratios, and eased decision-making by filtering nonrelevant information. Our results show that the application of user-centered design, interaction, and cognitive aspects to the design of climate information visualizations reduces the cognitive load of users during tasks performance, thus improving user experience. These aspects are key to successfully communicating climate information in a clearer and more accessible way, making it more understandable for both technical and nontechnical audiences.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference174 articles.

1. An eye-tracking study of website complexity from cognitive load perspective;Wang;Decis. Support Syst.,2014

2. Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze;Krejtz;PLOS ONE,2018

3. Communicating probabilistic information from climate model ensembles—Lessons from numerical weather prediction;Stephens;Wiley Interdiscip. Rev.: Climate Change,2012

4. Improving climate data visualization and information dissemination on the U.S. drought portal through user experience (UX) design;Bevington,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3