A Case Study of Mid-Atlantic Nocturnal Boundary Layer Events during WAVES 2006

Author:

Rabenhorst S.1,Whiteman D. N.2,Zhang D.-L.3,Demoz B.4

Affiliation:

1. Department of Physics, University of Maryland, Baltimore County, Baltimore, Maryland

2. Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

4. Department of Physics and Astronomy, Howard University, Washington, D.C.

Abstract

AbstractThe Water Vapor Variability-Satellite/Sondes (WAVES) 2006 field campaign provided a contiguous 5-day period of concentrated high-resolution measurements to examine finescale boundary layer phenomena under the influence of a summertime subtropical high over the mid-Atlantic region that is characterized by complex geography. A holistic analytical approach to low-level wind observations was adopted to identify the low-level flow structures and patterns of evolution on the basis of airmass properties and origination. An analysis of the measurements and the other available observations is consistent with the classic depiction of the daytime boundary layer development but revealed a pronounced diurnal cycle that was categorized into three stages: (i) daytime growth of the convective boundary layer, (ii) flow intensification into a low-level jet regime after dusk, and (iii) interruption by a downslope wind regime after midnight. The use of the field campaign data allows for the differentiation of the latter two flow regimes by their directions with respect to the orientation of the Appalachian Mountains and their airmass origins. Previous studies that have investigated mountain flows and low-level jet circulations have focused on regions with overt geographic prominence, stark gradients, or frequent reoccurrences, whereby such meteorological phenomena exhibit a clear signature and can be easily isolated and diagnosed. The results of this study provide evidence that similar circulation patterns operate in nonclassic locations with milder topography and atmospheric gradients, such as the mid-Atlantic region. The new results have important implications for the understanding of the mountain-forced flows and some air quality problems during the nocturnal period.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3