Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign

Author:

Adam M.1,Demoz B. B.1,Venable D. D.1,Joseph E.1,Connell R.1,Whiteman D. N.2,Gambacorta A.3,Wei J.3,Shephard M. W.4,Miloshevich L. M.5,Barnet C. D.6,Herman R. L.7,Fitzgibbon J.8

Affiliation:

1. Howard University, Washington, D.C

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Perot System Government Services, and NOAA/NESDIS, Camp Springs, Maryland

4. Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

5. National Center for Atmospheric Research, Boulder, Colorado

6. NOAA/NESDIS, Camp Springs, Maryland

7. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

8. National Weather Service, Sterling, Virginia

Abstract

Abstract Water vapor mixing ratio retrieval using the Howard University Raman lidar is presented with emphasis on three aspects: (i) comparison of the lidar with collocated radiosondes and Raman lidar, (ii) investigation of the relationship between atmospheric state variables and the relative performance of the lidar and sonde (in particular, their poor agreement), and (iii) comparison with satellite-based measurements. The measurements were acquired during the Water Vapor Validation Experiment Sondes/Satellites 2006 campaign. Ensemble averaging of water vapor mixing ratio data from 10 nighttime comparisons with Vaisala RS92 radiosondes shows, on average, an agreement within ±10%, up to ∼8 km. A similar analysis of lidar-to-lidar data of over 700 profiles revealed an agreement to within 20% over the first 7 km (10% below 4 km). A grid analysis, defined in the temperature–relative humidity space, was developed to characterize the lidar–radiosonde agreement and quantitatively localizes regions of strong and weak correlations as a function of altitude, temperature, or relative humidity. Three main regions of weak correlation emerge: (i) regions of low relative humidity and low temperature, (ii) regions of moderate relative humidity at low temperatures, and (iii) regions of low relative humidity at moderate temperatures. Comparison of Atmospheric Infrared Sounder and Tropospheric Emission Sounder satellite retrievals of moisture with those of Howard University Raman lidar showed a general agreement in the trend, but the satellites miss details in atmospheric structure because of their low resolution. A relative difference of about ±20% is usually found between lidar and satellite measurements for the coincidences available.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference46 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3