Notes on Temperature-Dependent Lidar Equations

Author:

Adam Mariana1

Affiliation:

1. Howard University, Washington, D.C.

Abstract

Abstract The temperature dependence of molecular backscatter coefficients must be taken into account when narrowband interference filters are used in lidar measurements. Thus, the spectral backscatter differential cross section of the molecules involved in the backscattering of the radiation has to be calculated or measured and the interference filter transmission efficiency must be known. The present paper is intended to describe in an easily reproducible manner the procedure involved in calculating the temperature-dependent functions introduced in the lidar equations, including the computation of the differential cross sections for air, nitrogen, and water vapor. The temperature-dependent functions are computed for the Howard University Raman lidar (HURL). The interference filter efficiencies are given by the manufacturer. Error estimates in water vapor mixing ratio and aerosol backscatter ratio involved when temperature-dependent functions are omitted are given for measurements taken with HURL. For the data analyzed, it is found that errors in estimating the water vapor mixing ratio are up to ∼6% while in estimating the aerosol backscattering ratio the errors are up to ∼1.3% in the planetary boundary layer and ∼2.2% in cirrus clouds. Theoretical computations are performed to determine temperature-dependent functions for nitrogen, water vapor, and their ratio, using simulated Gaussian-shaped filters. The goal is to find the optimum combination of different filters that will determine the ratio profiles of the temperature-dependent functions that are either the closest to unity or the least variable. The analyses reveal that quite constant profiles can be obtained for several combinations of the filters.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference29 articles.

1. Systematic distortions in water vapor mixing ratio and aerosol scattering ratio from a Raman lidar.;Adam,2007

2. Performance of the Howard University Raman lidar during 2006 WAVES campaign.;Adam;J. Optoelec. Adv. Mater.,2007

3. Ro-vibrational Raman cross sections of water vapor in the OH stretching region.;Avila;J. Mol. Spectrosc.,1999

4. The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions.;Avila;J. Mol. Spectrosc.,2004

5. Temperature measurements with lidar.;Behrendt,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3