Spatial Variability of Winds and HRRR–NCEP Model Error Statistics at Three Doppler-Lidar Sites in the Wind-Energy Generation Region of the Columbia River Basin

Author:

Pichugina Y. L.12,Banta R. M.2,Bonin T.12,Brewer W. A.2,Choukulkar A.12,McCarty B. J.12,Baidar S.12,Draxl C.3,Fernando H. J. S.4,Kenyon J.12,Krishnamurthy R.4,Marquis M.2,Olson J.12,Sharp J.5,Stoelinga M.6

Affiliation:

1. a Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. b NOAA/Earth System Research Laboratory, Boulder, Colorado

3. c National Renewable Energy Laboratory, Golden, Colorado

4. d University of Notre Dame, Notre Dame, Indiana

5. e Sharply Focused, LLC, Portland, Oregon

6. f Vaisala, Inc., Seattle, Washington

Abstract

AbstractAnnually and seasonally averaged wind profiles from three Doppler lidars were obtained from sites in the Columbia River basin of east-central Oregon and Washington, a major region of wind-energy production, for the Second Wind Forecast Improvement Project (WFIP2) experiment. The profile data are used to quantify the spatial variability of wind flows in this area of complex terrain, to assess the HRRR–NCEP model’s ability to capture spatial and temporal variability of wind profiles, and to evaluate model errors. Annually averaged measured wind speed differences over the 70-km extent of the lidar measurements reached 1 m s−1 within the wind-turbine rotor layer, and 2 m s−1 for 200–500 m AGL. Stronger wind speeds in the lowest 500 m occurred at sites higher in elevation, farther from the river, and farther west—closer to the Cascade Mountain barrier. Validating against the lidar data, the HRRR model underestimated strong wind speeds (>12 m s−1) and, consequently, their frequency of occurrence, especially at the two lowest-elevation sites, producing annual low biases in rotor-layer wind speed of 0.5 m s−1. The RMSE between measured and modeled winds at all sites was about 3 m s−1 and did not degrade significantly with forecast lead time. The nature of the model errors was different for different seasons. Moreover, although the three sites were located in the same basin terrain, the nature of the model errors was different at each site. Thus, if only one of the sites had been instrumented, different conclusions would have been drawn as to the major sources of model error, depending on where the measurements were made.

Funder

National Oceanic and Atmospheric Administration

US Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3