Expanding the Goddard CSH Algorithm for GPM: New Extratropical Retrievals

Author:

Tao W.-K.1,Iguchi T.2,Lang S.3

Affiliation:

1. Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, Maryland

2. Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

3. Mesoscale Atmospheric Processes Laboratory, NASA/Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

Abstract

AbstractThe Goddard convective–stratiform heating (CSH) algorithm has been used to retrieve latent heating (LH) associated with clouds and cloud systems in support of the Tropical Rainfall Measuring Mission and Global Precipitation Measurement (GPM) mission. The CSH algorithm requires the use of a cloud-resolving model to simulate LH profiles to build lookup tables (LUTs). However, the current LUTs in the CSH algorithm are not suitable for retrieving LH profiles at high latitudes or winter conditions that are needed for GPM. The NASA Unified-Weather Research and Forecasting (NU-WRF) Model is used to simulate three eastern continental U.S. (CONUS) synoptic winter and three western coastal/offshore events. The relationship between LH structures (or profiles) and other precipitation properties (radar reflectivity, freezing-level height, echo-top height, maximum dBZ height, vertical dBZ gradient, and surface precipitation rate) is examined, and a new classification system is adopted with varying ranges for each of these precipitation properties to create LUTs representing high latitude/winter conditions. The performance of the new LUTs is examined using a self-consistency check for one CONUS and one West Coast offshore event by comparing LH profiles retrieved from the LUTs using model-simulated precipitation properties with those originally simulated by the model. The results of the self-consistency check validate the new classification and LUTs. The new LUTs provide the foundation for high-latitude retrievals that can then be merged with those from the tropical CSH algorithm to retrieve LH profiles over the entire GPM domain using precipitation properties retrieved from the GPM combined algorithm.

Funder

Goddard Space Flight Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3