Synoptic to Microscale Processes Affecting the Evolution of a Cold-Air Pool in a Northern New England Forested Mountain Valley

Author:

Kelsey Eric P.1,Cann Matthew D.2,Lupo Kevin M.2,Haddad Liana J.2

Affiliation:

1. Department of Atmospheric Science and Chemistry,a Plymouth State University, Plymouth, and Mount Washington Observatory, North Conway, New Hampshire

2. Department of Atmospheric Science and Chemistry,a Plymouth State University, Plymouth, New Hampshire

Abstract

AbstractThe formation of katabatic winds and pooling of cold air in mountain valleys impact air quality, precipitation type, and local ecosystem functions. Much is still poorly understood about the multiscale interaction of processes in a mature mixed-hardwood forest that cause the formation and evolution of cold-air pools (CAPs). Processes involved in the evolution of a CAP in the Hubbard Brook Experimental Forest valley in New Hampshire were investigated during a field campaign on 4–5 November 2015. Vertical profiles of temperature and humidity were measured along a 150-m-long tethered balloon in the center of the valley and were compared with temperature and wind observations on the surrounding slopes to identify and assess the impacts of multiscale processes on a CAP. A CAP formed rapidly during the afternoon of 4 November and attained its maximum depth of ~150 m by sunset. This maximum depth is likely a result of the topography of the valley. Warm-air advection (WAA) occurred during the second half of the night at high elevations, and warm air mixed downward into the valley. As a result, the vertical thermal gradient strengthened and static stability increased, which allowed the lowest part of the CAP to continue to radiatively cool while the upper part of the CAP was warmed and eroded by the WAA. Results suggest that the canopy acts as the primary cooling surface for air at night, which causes split katabatic flow: cold and fast flow above canopy and warmer and slower flow below canopy. Understanding these processes in sloped forests has implications for eddy covariance research and montane microclimates.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3