A New Method to Diagnose Cyclone–Cyclone Interaction and Its Influences on Precipitation

Author:

Cao Zuohao1,Xu Qin2,Zhang Da-Lin3

Affiliation:

1. Environment and Climate Change Canada, Toronto, Ontario, Canada

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

AbstractUnlike the classical point vortex model, a new method is developed to extract flows induced not only by vorticity but also by divergence in a well-defined vortex core area of a cyclone. This new method is applied to diagnosing the interactions of three midlatitude cyclones (called A, B, and C) that account for a missed summer severe rainfall forecast, in which the daily precipitation predicted by the Canadian operational model is an order of magnitude smaller than the rain gauge and radar measurements. In this event, cyclone B, responsible for the severe rainfall occurrence, was advected largely by flows induced by two neighboring cyclones: A and C to the west and east, respectively. This work attempts to assess whether and to what degree the vertical tilt of the observed cyclone versus that of the forecast cyclone B is caused by advections of the environmental flows (including A- and C-induced flows) at 500 and 1000 hPa. Results show that the observed cyclone B was advected mainly by the cyclone A–induced flow at 500 hPa into a vertically tilted structure that was northwestward against the vertical shear of the environmental flow and thus favorable for upward motion and cyclone intensification around the time of severe rainfall. However, the forecast cyclone B was advected largely by the cyclone A–induced flow at 500 hPa and the cyclone C–induced flow at 1000 hPa into an increasingly northward-tilted structure that was along the vertical shear of the environmental flow and thus unfavorable for upward motion and cyclone intensification, leading to the missed forecast of severe rainfall. Suggestions are made for future improvements of model forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3