The Impact of Incorporating the Air–Lake Interaction on Quantitative Precipitation Forecasts over Southern Ontario, Canada

Author:

Cao Zuohao1,Bélair Stéphane2,Zhang Da-Lin3

Affiliation:

1. a Meteorological Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

2. b Meteorological Research Division, Environment and Climate Change Canada, Dorval, Quebec, Canada

3. c Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Abstract

Abstract A short-range regional, two-way coupled atmosphere–ocean–ice model has been recently developed in an attempt to improve, among other things, quantitative precipitation forecasts (QPFs) over southern Ontario, Canada, by incorporating air–lake interaction over the Great Lakes region. Here, we attempt to 1) assess the impact of the air–lake coupling on daily QPFs, as verified against the Canadian Precipitation Analysis and independent observations, over southern Ontario during the period of June 2016–May 2017; and 2) diagnose major physical processes governing the QPF differences between the coupled and uncoupled models by relating precipitation to those processes at the air–water interface and above. Results indicate that the coupled model tends to reduce the area-averaged and monthly averaged daily QPF biases and standard deviations in 5 months of October, November, and December 2016, and April and May 2017, but increase and deteriorate precipitation biases during the summer months. Most of the deteriorations occur during the daytime, while improvements are observed during the nighttime (in 7 of 12 months). During the daytime, slight improvements appear in 2 months. A further diagnosis indicates that the daily QPF differences between the two models are highly correlated with the differences of their sensible and latent heat fluxes. The maximum (minimum) difference of sensible (latent) heat flux in August 2016 (December 2016) is in phase with the maximum (minimum) difference of the two-model daily QPFs. The daily QPF differences in the other months are also controlled by the differences of vertically integrated water vapor flux convergence, and surface temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference47 articles.

1. Comparison of methodologies for probabilistic quantitative precipitation forecasting;Applequist, S.,2002

2. AmeriFlux BASE CA-TP4 Ontario-Turkey Point 1939 Plantation White Pine, Ver. 4-5, AmeriFlux AMP;Arain, M. A.,2018

3. Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results;Bélair, S.,2003

4. The computation of equivalent potential temperature;Bolton, D.,1980

5. Progress and challenges in short- to medium-range coupled prediction;Brassington, G. B.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of Cyclone‐Cyclone Interaction on Lake‐Effect Snowbands: A False Alarm;Journal of Geophysical Research: Atmospheres;2023-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3