Author:
Langhans Wolfgang,Schmidli Juerg,Fuhrer Oliver,Bieri Susanne,Schär Christoph
Abstract
AbstractThe purpose of this paper is to validate the representation of topographic flows and moist convection over the European Alps in a convection-parameterizing simulation (CPM; Δx = 6.6 km) and two cloud-resolving simulations (CRM; Δx = 1.1 and 2.2 km). All simulations and further sensitivity experiments are validated against a large set of observations for an 18-day fair-weather summer period. The episode considered is characterized by pronounced plain–valley pressure gradients, strong daytime upvalley flows, and weak nighttime down-valley flows. In addition, convective precipitation is recorded during the late afternoon and is preceded by a phase of shallow convection. The observed transition from shallow to deep convection occurs within a 3-h period. The results indicate good agreement between both CRMs and the observed diurnal evolution in terms of near-surface winds, cloud formation, and precipitation. The differences between the two CRMs are surprisingly small. In contrast, the CPM produces too-early peaks of cloud cover and precipitation that are due to a too-early activation of deep convection. Detailed sensitivity experiments show that the convection scheme, rather than the underresolved small-scale topography, is responsible for the poor performance of the CPM. In addition, observations and simulations show that late-morning mass convergence does not correlate with afternoon precipitation. Rather, it is found that enhanced convective activity is related to increased conditional instability.
Publisher
American Meteorological Society
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献