Predicting Hydrological Change in an Alpine Glacierized Basin and Its Sensitivity to Landscape Evolution and Meteorological Forcings

Author:

Aubry‐Wake Caroline123ORCID,Pomeroy John W.1ORCID

Affiliation:

1. Centre for Hydrology University of Saskatchewan Saskatoon Saskatchewan Canada

2. Department of Physical Geography Utrecht University Utrecht The Netherlands

3. Sidney St Canmore Alberta Canada

Abstract

AbstractShifting precipitation patterns, a warming climate, changing snow dynamics and retreating glaciers are occurring simultaneously in glacierized mountain headwaters. To predict future hydrological behavior in an exemplar glacierized basin, a spatially distributed, physically based cold regions process hydrological model including on and off‐glacier process representations was applied to the Peyto Glacier Research Basin in the Canadian Rockies. The model was forced with bias‐corrected outputs from a high‐resolution Weather and Research Forecasting (WRF‐PGW) atmospheric simulation for 2000–2015, and under pseudo‐global warming for 2085–2100 under a business‐as‐usual climate change scenario. The simulations show that the end‐of‐century increase in precipitation nearly compensates for the decreased ice melt associated with almost complete deglaciation, resulting in a decrease in annual streamflow of 7%. However, the timing of streamflow advances drastically, with peak flow shifting from July to June, and August streamflow dropping by 68%. To examine the sensitivity of future hydrology to possible future drainage basin biophysical attributes, the end‐of‐century simulations were run under a range of initial conditions and parameters and showed the highest sensitivity to initial ice volume and surface water storage capacity. This comprehensive examination suggests that hydrological compensation between declining icemelt and increasing rainfall and snowmelt runoff as well as between deglaciation and increasing basin depressional storage capacity play important roles in determining future streamflow in a rapidly deglaciating high‐mountain environment. Conversely, afforestation and soil development had relatively smaller impacts on future hydrology.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Canada Research Chairs

Global Water Futures

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3