Evaluating Light Rain from Satellite- and Ground-Based Remote Sensing Data over the Subtropical North Atlantic

Author:

Burdanowitz Jörg1,Nuijens Louise1,Stevens Bjorn1,Klepp Christian2

Affiliation:

1. Max Planck Institute for Meteorology, Hamburg, Germany

2. Climate System Analysis and Prediction/Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany

Abstract

AbstractThree state-of-the-art satellite climatologies are analyzed for their ability to observe light rain from predominantly shallow, warm clouds over the subtropical North Atlantic Ocean trade winds (1998–2005). HOAPS composite (HOAPS-C), version 3.2; TMPA, version 7; and GPCP 1 Degree Daily (1DD), version 1.2, are compared with ground-based S-Pol radar data from the Rain in Cumulus over the Ocean (RICO; winter 2004/05) campaign and Micro Rain Radar data from the Barbados Cloud Observatory (2010–12). Winter rainfall amounts to one-third of annual rainfall, whereby light rain from warm clouds dominates. Daily rain occurrence and rain intensity during RICO largely differ among the satellite climatologies. TMPA best captures the frequent light rain events, only missing 7% of days on which the S-Pol radar detects rain, whereas HOAPS-C misses 33% and GPCP 1DD misses 56%. Algorithm constraints mainly cause these differences. In HOAPS-C also few available passive microwave (PMW) sensor overpasses limit its performance. TMPA outperforms HOAPS-C when only comparing nonmissing time steps, yet HOAPS-C can detect rain for S-Pol rain-covered areas down to 2%. In GPCP 1DD’s algorithm, the underestimated rain occurrence derived from PMW scanners is linked to the overestimated rain intensity, being constrained by the GPCP monthly satellite–gauge combination, whereby IR sensors determine the timing. Algorithm improvements in version 1.2 increased the rain occurrence by 50% relative to version 1.1. In version 7 of TMPA, algorithm corrections in PMW sounder data largely improved the rain detection relative to version 6. TMPA best represents light rain in the North Atlantic trades, followed by HOAPS-C and GPCP 1DD.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3