Gaussian Copula Method for Bias Correction of Daily Precipitation Generated by a Dynamical Model

Author:

Kim Moosup1,Yhang Yoo-Bin1,Lim Chang-Mook1

Affiliation:

1. APEC Climate Center, Busan, South Korea

Abstract

AbstractThe daily precipitation data generated by dynamical models, including regional climate models, generally suffer from biases in distribution and spatial dependence. These are serious flaws if the data are intended to be applied to hydrometeorological studies. This paper proposes a scheme for correcting the biases in both aspects simultaneously. The proposed scheme consists of two steps: an aggregation step and a disaggregation step. The first one aims to obtain a smoothed precipitation pattern that must be retained in correcting the bias, and the second aims to make up for the deficient spatial variation of the smoothed pattern. In both steps, the Gaussian copula plays important roles since it not only provides a feasible way to correct the spatial correlation of model simulations but also can be extended for large-dimension cases by imposing a covariance function on its correlation structure. The proposed scheme is applied to the daily precipitation data generated by a regional climate model. We can verify that the biases are satisfactorily corrected by examining several statistics of the corrected data.

Funder

APEC Climate Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3