Weather Generator–Based Downscaling of EAWM Strength Prediction to the Climate of a Korean Basin

Author:

Kim Moosup1,Kim Seon Tae2,Jeong Yeomin2

Affiliation:

1. Department of Statistics, Keimyung University, Daegu, South Korea

2. Asia-Pacific Economic Cooperation Climate Center, Busan, South Korea

Abstract

AbstractIn this paper, we propose a downscaling method that statistically describes a local-scale climate from large-scale circulations using the case of a Korean basin during boreal winter. Specifically, since the East Asian winter monsoon (EAWM) affects the climate of the Korean Peninsula, we make a weather generator model describing the response of the basin climate to the monsoon strength. Moreover, it operates on the basis of a tercile probabilistic prediction of the EAWM strength to generate diverse scenarios of daily weather sequence during the season, which can be utilized in evaluation of the climate impact. We evaluate the prediction skills of operational hindcasts for several existing EAWM indices by applying a multinomial logistic regression method to choose the most suitable index for the downscaling. In the weather generator model, the precipitation model part is designed to be fully parametric. Its parameter values are allowed to vary according to the monsoon strength so that they can represent the climate variability of precipitation. In the temperature model part, the daily temporal variations of the temperature over the Korean basin are decomposed into several oscillations with different frequencies. Since the slowly varying oscillations significantly respond to the monsoon strength, the proposed downscaling scheme is based on the statistical simulation of oscillations according to the monsoon strength. The proposed downscaling scheme is evaluated in terms of the reproducibility of the climate characteristics for a given EAWM strength and the informativeness for predicting monthly climate characteristics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference42 articles.

1. Empirical and process-based approaches to climate-induced forest mortality models;Adams;Front. Plant Sci.,2013

2. Improvement of 1-month lead predictability of the wintertime AO using a realistically varying solar constant for a CGCM;Ahn;Meteor. Appl.,2014

3. A semiparametric multivariate and multisite weather generator;Apipattanavis;Water Resour. Res.,2007

4. Predicting regional soybean yield using crop growth simulation model;Ban;Korean J. Remote Sens.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3