A Method to Assess the Wind and Solar Resource and to Quantify Interannual Variability over the United States under Current and Projected Future Climate

Author:

Haupt Sue Ellen1,Copeland Jeffrey2,Cheng William Y. Y.3,Zhang Yongxin3,Ammann Caspar3,Sullivan Patrick4

Affiliation:

1. National Center for Atmospheric Research,* Boulder, Colorado

2. Weatherflow, Inc., Fort Collins, Colorado

3. National Center for Atmospheric Research, Boulder, Colorado

4. National Renewable Energy Laboratory, Golden, Colorado

Abstract

AbstractThe National Center for Atmospheric Research and the National Renewable Energy Laboratory (NREL) collaborated to develop a method to assess the interannual variability of wind and solar power over the contiguous United States under current and projected future climate conditions, for use with NREL’s Regional Energy Deployment System (ReEDS) model. The team leveraged a reanalysis-derived database to estimate the wind and solar power resources and their interannual variability under current climate conditions (1985–2005). Then, a projected future climate database for the time range of 2040–69 was derived on the basis of the North American Regional Climate Change Assessment Program (NARCCAP) regional climate model (RCM) simulations driven by free-running atmosphere–ocean general circulation models. To compare current and future climate variability, the team developed a baseline by decomposing the current climate reanalysis database into self-organizing maps (SOMs) to determine the predominant modes of variability. The current climate patterns found were compared with those of an NARCCAP-based future climate scenario, and the CRCM–CCSM combination was chosen to describe the future climate scenario. The future climate scenarios’ data were projected onto the Climate Four Dimensional Data Assimilation reanalysis SOMs. The projected future climate database was then created by resampling the reanalysis on the basis of the frequency of occurrence of the future SOM patterns, adjusting for the differences in magnitude of the wind speed or solar irradiance between the current and future climate conditions. Comparison of the changes in the frequency of occurrence of the SOM modes between current and future climate conditions indicates that the annual mean wind speed and solar irradiance could be expected to change by up to 10% (increasing or decreasing regionally).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. Armstrong, M. A. , 2000: Comparison of MM5 forecast shortwave radiation with data obtained from the Atmospheric Radiation Measurement Program. M.S thesis, Dept. of Meteorology, University of Maryland, College Park, 22 pp.

2. Potential contribution of wind energy to climate change mitigation;Barthelmie;Nat. Climate Change,2014

3. Global and international energy models: A survey;Beaujean;Annu. Rev. Energy,1977

4. Evaluation of surface forecasts by the WRF and ETA models over the western United States;Cheng;Wea. Forecasting,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3