A Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea between China and the Korean Peninsula

Author:

Lee Dan-Bi1,Chun Hye-Yeong1

Affiliation:

1. Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea

Abstract

AbstractAt 0247 UTC 13 February 2013, a South Korean commercial aircraft encountered moderate-level clear-air turbulence at ~24 000 ft (~7.3 km) over the Yellow Sea (121.25°E, 38.55°N) en route from Incheon, South Korea, to Tianjin, China. Two crew members were severely injured by this event. To investigate the possible mechanisms of this event, a high-resolution numerical simulation using the Weather Research and Forecasting Model was conducted. In the synoptic-scale flow pattern, one of two bifurcated jet streams passed over the Yellow Sea, and strong horizontal and vertical gradients of the wind occurred on the northern edge of the jet stream near the flight route. An upper-level frontal system on the cyclonic shear side of the jet intensified as it moved northward toward a strengthening upper-level trough in northeastern China. The developed jet–frontal system induced strong vertical wind shear and tropopause folding, which extended down to about z = 5 km, near the observed turbulence region. Despite a relatively high stability with an intrusion of stratospheric air with tropopause folding, the strong vertical wind shear led to a small Richardson number in the incident region, which in turn induced the aviation turbulence through the Kelvin–Helmholtz instability. Although small-scale mountain waves were evident during the passage of flight before the incident time, breaking of these waves was not likely the key factor for the observed turbulence, given that the wave amplitudes were weak and that the strong zonal wind on the upstream of the mountain waves prohibited wave saturation and breakdown.

Funder

Korea Meteorological Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3