Using the SAL Technique for Spatial Verification of Cloud Processes: A Sensitivity Analysis

Author:

Weniger Michael1,Friederichs Petra1

Affiliation:

1. Meteorological Institute, University of Bonn, Bonn, Germany

Abstract

AbstractThe feature-based spatial verification method named for its three score components: structure, amplitude, and location (SAL) is applied to cloud data, that is, two-dimensional spatial fields of total cloud cover and spectral radiance. Model output is obtained from the German-focused Consortium for Small-Scale Modeling (COSMO-DE) forward operator Synthetic Satellite Simulator (SynSat) and compared with SEVIRI satellite data. The aim of this study is twofold: first, to assess the applicability of SAL to this kind of data and, second, to analyze the role of external object identification algorithms (OIA) and the effects of observational uncertainties on the resulting scores. A comparison of three different OIA shows that the threshold level, which is a fundamental part of all studied algorithms, induces high sensitivity and unstable behavior of object-dependent SAL scores (i.e., even very small changes in parameter values lead to large changes in the resulting scores). An in-depth statistical analysis reveals significant effects on distributional quantities commonly used in the interpretation of SAL, for example, median and interquartile distance. Two sensitivity indicators that are based on the univariate cumulative distribution functions are derived. They make it possible to assess the sensitivity of the SAL scores to threshold-level changes without computationally expensive iterative calculations of SAL for various thresholds. The mathematical structure of these indicators connects the sensitivity of the SAL scores to parameter changes with the effect of observational uncertainties. Last, the discriminating power of SAL is studied. It is shown that—for large-scale cloud data—changes in the parameters may have larger effects on the object-dependent SAL scores (i.e., the S and L2 scores) than does a complete loss of temporal collocation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3