Toward an Improved Multimodel ENSO Prediction

Author:

Barnston Anthony G.1,Tippett Michael K.2,van den Dool Huug M.3,Unger David A.3

Affiliation:

1. International Research Institute for Climate and Society, Columbia University, Palisades, New York

2. International Research Institute for Climate and Society, Columbia University, Palisades, New York, and Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

3. NOAA/Climate Prediction Center, Camp Springs, Maryland

Abstract

AbstractSince 2002, the International Research Institute for Climate and Society, later in partnership with the Climate Prediction Center, has issued an ENSO prediction product informally called the ENSO prediction plume. Here, measures to improve the reliability and usability of this product are investigated, including bias and amplitude corrections, the multimodel ensembling method, formulation of a probability distribution, and the format of the issued product. Analyses using a subset of the current set of plume models demonstrate the necessity to correct individual models for mean bias and, less urgent, also for amplitude bias, before combining their predictions. The individual ensemble members of all models are weighted equally in combining them to form a multimodel ensemble mean forecast, because apparent model skill differences, when not extreme, are indistinguishable from sampling error when based on a sample of 30 cases or less. This option results in models with larger ensemble numbers being weighted relatively more heavily. Last, a decision is made to use the historical hindcast skill to determine the forecast uncertainty distribution rather than the models’ ensemble spreads, as the spreads may not always reproduce the skill-based uncertainty closely enough to create a probabilistically reliable uncertainty distribution. Thus, the individual model ensemble members are used only for forming the models’ ensemble means and the multimodel forecast mean. In other situations, the multimodel member spread may be used directly. The study also leads to some new formats in which to more effectively show both the mean ENSO prediction and its probability distribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3