Improving the Accuracy of Rainfall Prediction Using Bias-Corrected NMME Outputs: A Case Study of Surabaya City, Indonesia

Author:

Faidah Defi Y.12ORCID,Kuswanto Heri13ORCID,Sutikno Sutikno1ORCID

Affiliation:

1. Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2. Department of Statistics, Universitas Padjajaran, Bandung 45363, Indonesia

3. Center for Disaster Mitigation and Climate Change, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

Abstract

Generating an accurate rainfall prediction is a challenging work due to the complexity of the climate system. Numerous efforts have been conducted to generate reliable prediction such as through ensemble forecasts, the North Multi-Model Ensemble (NMME). The performance of NMME globally has been investigated in many studies. However, its performance in a specific location has not been much validated. This paper investigates the performance of NMME to forecast rainfall in Surabaya, Indonesia. Our study showed that the rainfall prediction from NMME tends to be underdispersive, which thus requires a bias correction. We proposed a new bias correction method based on gamma regression to model the asymmetric pattern of rainfall distribution and further compared the results with the average ratio method and linear regression. This study showed that the NMME performance can be improved significantly after bias correction using the gamma regression method. This can be seen from the smaller RMSE and MAE values, as well as higher R2 values compared with the results from linear regression and average ratio methods. Gamma regression improved the R2 value by about 30% higher than raw data, and it is about 20% higher than the linear regression approach. This research showed that NMME can be used to improve the accuracy of rainfall forecast in Surabaya.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3