Stratocumulus-Topped Marine Boundary Layer Processes Revealed by the Absence of Profiler Reflectivity

Author:

Hartten Leslie M.1,Johnston Paul E.1

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

AbstractStratocumulus (Sc) clouds occur frequently over the cold waters of the southeastern Pacific Ocean. Data collected during two Pan American Climate Study research cruises in the tropical eastern Pacific illuminate many aspects of this Sc-topped marine boundary layer (MBL). Here the focus is on understanding gaps in detectable wind-profiler reflectivities during two boreal autumn cruises. After rigorous quality control that included applying the Riddle threshold of minimum signal-to-noise ratio (SNR) detectability, there are many instances with no measurable atmospheric signals through a depth of up to several hundred meters, often lasting for an hour or more. Rain gauge data from the autumn 2004 cruise are used to calibrate the profiler, which allows SNR to be converted to both equivalent reflectivity and the structure-function parameter of the index of refraction . Profiles of statistics from the two profiler modes (resolutions) highlight the wide range of during a 24-h period and bound the atmosphere’s when low-mode gaps are not mirrored in the high-mode data. Considering the gaps in terms of allows them to be understood as indications of reduced “top down” buoyancy processes and/or reduced turbulent intensity, both of which have been demonstrated by previous researchers to be associated with decoupling within the Sc-topped MBL. A decoupling index calculated from surface and ceilometer data strongly suggests that decoupled conditions were common and that the MBL was coupled when gaps in profiler reflectivity were unlikely. Further study of data from other cruises may lead to a method of using profiler reflectivity as an indicator of decoupled conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3