Postdeployment Calibration of a Tropical UHF Profiling Radar via Surface- and Satellite-Based Methods

Author:

Hartten Leslie M.1ORCID,Johnston Paul E.1,Rodríguez Castro Valerie M.2,Esteban Pérez Paola S.3

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Pre-College Internship Program, NCAR, Boulder, Colorado, and Department of Mechanical Engineering, University of Puerto Rico, Mayagüez, Puerto Rico

3. Pre-College Internship Program, NCAR, Boulder, Colorado, and Colegio San José, Cajicá, Colombia

Abstract

Wind profiling radars are usually not calibrated with respect to reflectivity because such calibrations are both unnecessary for good wind measurements and costly. However, reflectivity from calibrated profilers can reveal many atmospheric attributes beyond winds. Establishing ways to calibrate these radars even after they have been taken out of service would expand the utility of archived profiler data. We have calibrated one operating mode of a 915-MHz profiler deployed at Manus, Papua New Guinea (1992–2001), using two methods. The first method adjusts a radar parameter until the profiler’s estimate of rainfall during stratiform events closely matches surface observations. The second adjusts the parameter so that mean brightband heights observed by the profiler (July 1992–August 1994) match the mean brightband reflectivities over the profiler as observed by the TRMM Precipitation Radar (January 1998–July 2001). The results differ by about 5% and yield very similar precipitation errors during tested stratiform events. One or both of these methods could be used on many other wind profilers, whether they have been decommissioned or are currently operational. Data from such calibrated profilers will enable research employing the equivalent reflectivity factor observed by profilers to be compared with that from other radars, and will also enable turbulent studies with C n2.

Funder

Climate Program Office

National Center for Atmospheric Research

Ana G. Méndez University System

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3