Affiliation:
1. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Abstract
AbstractThe city of Jeddah, Saudi Arabia, is characterized by a hot and arid desert climate. On occasion, however, extreme precipitation events have led to flooding that caused extensive damage to human life and infrastructure. This study investigates the effect of incorporating an urban canopy model and urban land cover when simulating severe weather events over Jeddah using the Weather Research and Forecasting (WRF) Model at a convective-permitting scale (1.5-km resolution). Two experiments were conducted for 10 heavy rainfall events associated with the dominant large-scale patterns favoring convection over Jeddah: (i) an “urban” experiment that included the urban canopy model and modern-day land cover and (ii) a “desert” experiment that replaced the city area with its presettlement, natural land cover. The results suggest that urbanization plays an important role in modifying rainfall around city area. The urban experiment enhances the amount of rainfall by 26% on average over the Jeddah city area relative to the desert experiment in these extreme events. The changes in model-simulated precipitation are primarily tied to a nocturnal heat-island effect that modifies the planetary boundary layer and atmospheric instability of the convective events.
Funder
King Abdullah University of Science and Technology
Publisher
American Meteorological Society
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献