Affiliation:
1. Department of Physical Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
2. Climate Change Center National Center for Meteorology Jeddah Saudi Arabia
3. Center for Computational Sciences University of Tsukuba Tsukuba Japan
4. National Center for Environmental Technology King Abdulaziz City for Science and Technology Riyadh Saudi Arabia
Abstract
AbstractThe Kingdom of Saudi Arabia (KSA) is characterized by a desert climate, with rainfall mainly occurring during the cooler months (November–April) and sometimes in conjunction with intense extratropical systems that can cause serious damage and casualties. Given the vast size of KSA, there are gaps in understanding the association between large‐scale atmospheric circulations and local organized rainfall events, and in characterizing the diversity of this association. To address these gaps, we analyse an in‐house 5‐km horizontal grid spacing regional atmospheric reanalysis that has been specifically generated for the Arabian Peninsula to explore the mechanisms behind the organized rainfall events over KSA. Nine major regions with distinct climate regimes were objectively selected to represent KSA rainfall climatology. The results demonstrate that organized thunderstorms over KSA only occur under sufficient moisture and environmental instabilities. Mesoscale convective systems responsible for organized rainfall generally develop and propagate with low‐level moisture flow from the nearby seas (the Red Sea to the west and Arabian Gulf to the east) toward the desert. In the central part of KSA, the most frequent physical mechanism responsible for rainfall is winter extratropical influence, followed by spring extratropical–tropical interactions, and spring tropical influence. The east coast is characterized by two rainfall modes: a continuous southwest–northeast rain corridor and concentrated southwestern rain. Large‐scale organized convection following three physically distinct mechanisms (extratropical, transition and tropical) is revealed along the west coast.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献