Synergy of Satellite- and Ground-Based Observations for Continuous Monitoring of Atmospheric Stability, Liquid Water Path, and Integrated Water Vapor: Theoretical Evaluations Using Reanalysis and Neural Networks

Author:

Toporov Maria1,Löhnert Ulrich1

Affiliation:

1. Institute of Geophysics and Meteorology, University of Cologne, Cologne, Germany

Abstract

AbstractAtmospheric stability plays an essential role in the evolution of weather events. While the upper troposphere is sampled by satellite sensors, and in situ sensors measure the atmospheric state close to the surface, only sporadic information from radiosondes or aircraft observations is available in the planetary boundary layer. Ground-based remote sensing offers the possibility to continuously and automatically monitor the atmospheric state in the boundary layer. Microwave radiometers (MWR) provide temporally resolved temperature and humidity profiles in the boundary layer and accurate values of integrated water vapor and liquid water path, and the differential absorption lidar (DIAL) measures humidity profiles with high vertical and temporal resolution up to 3000-m height. Both instruments have the potential to complement satellite observations by additional information from the lowest atmospheric layers, particularly under cloudy conditions. This study presents a neural network retrieval for stability indices, integrated water vapor, and liquid water path from simulated satellite- and ground-based measurements based on the COSMO regional reanalysis (COSMO-REA2). Focusing on the temporal resolution, the satellite-based instruments considered in the study are the currently operational Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the future Infrared Sounder (IRS), both in geostationary orbit. Relative to the retrieval based on satellite observations, the additional ground-based MWR/DIAL measurements provide valuable improvements not only in the presence of clouds, which represent a limiting factor for infrared SEVIRI/IRS, but also under clear-sky conditions. The root-mean-square error for convective available potential energy, for instance, is reduced by 24% if IRS observations are complemented by ground-based MWR measurements.

Funder

Deutscher Wetterdienst

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3