The NOAA Hydrometeorology Testbed Soil Moisture Observing Networks: Design, Instrumentation, and Preliminary Results

Author:

Zamora Robert J.1,Ralph F. Martin1,Clark Edward2,Schneider Timothy1

Affiliation:

1. NOAA/Earth System Research Laboratory, Boulder, Colorado

2. NOAA/National Weather Service Colorado River Basin Forecast Center, Salt Lake City, Utah

Abstract

Abstract The NOAA Hydrometeorology Testbed (HMT) program has deployed soil moisture observing networks in the watersheds of the Russian River and the North Fork (NF) of the American River in northern California, and the San Pedro River in southeastern Arizona. These networks were designed to serve the combined needs of the hydrological, meteorological, agricultural, and climatological communities for observations of soil moisture on time scales that range from minutes to decades. The networks are a major component of the HMT program that has been developed to accelerate the development and infusion of new observing technologies, modeling methods, and recent scientific research into the National Weather Service (NWS) offices and to help focus research and development efforts on key hydrological and meteorological forecast problems. These forecast problems are not only of interest to the NWS, but they also play a crucial role in providing input to water managers who work at the national, state, and local government levels to provide water for human consumption, agriculture, and other needs. The HMT soil moisture networks have been specifically designed to capture the changes in soil moisture that are associated with heavy precipitation events and runoff from snowpack during the melt season. This paper describes the strategies used to site the networks and sensors as well as the selection, testing, and calibration of the soil moisture probes. In addition, two illustrative examples of the data gathered by the networks are shown. The first example shows changes in soil moisture observed before and during a flood event on the Babocomari River tributary of the San Pedro River near Sierra Vista, Arizona, on 23 July 2008. The second example examines a 5-yr continuous time series of soil moisture gathered at Healdsburg, California. The time series illustrates the transition from a multiyear wet period to exceptionally dry conditions from a soil moisture perspective.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Reference22 articles.

1. The Johnstown flood of July 1977: A long-lived convective system;Bosart;J. Atmos. Sci.,1981

2. The Oklahoma Mesonet: A technical overview;Brock;J. Atmos. Oceanic Technol.,1995

3. The NWS River Forecast System—Catchment modeling;Burnash,1995

4. CS616 and CS625 water content reflectometers;Campbell Scientific,2010

5. Mesoanalysis of the Big Thompson storm;Caracena;Mon. Wea. Rev.,1979

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3